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Problem definition

Quantity of Interest in ice sheet modeling:

total ice mass loss/gain by, e.g. 2100 - sea level rise prediction

Main sources of uncertainty:

- climate forcings (e.g. Surface Mass Balance)
- basal friction
- bedrock topography
- geothermal heat flux

- model parameters (e.g. Glen's Flow Law exponent)




Problem definition

Goal: Uncertainty Quantification of Qol

(Main) Issue: Huge number of parameters (10°-10")

Work flow:

» Perform adjoint-based deterministic inversion to estimate initial ice sheet state.
(i.e. characterize the present state of ice sheet to be used for performing prediction runs).

e Use deterministic inversion to build a Gaussian posterior in the inverse problem (based
on recovered fields and the Hessian).

e Bayesian Calibration: construct the posterior distribution using Markov Chain Monte
Carlo run on an emulator of the forward model.

» Forward Propagation: sample the obtained distribution and perform ensemble of forward
propagation runs to compute the uncertainty on the Qol.




Deterministic Inversion

GOAL
Find ice sheet initial state that
« matches observations (e.g. surface velocity, temperature, etc.)
« matches present-day geometry (elevation, thickness)
e is in “equilibrium” with climate forcings (SMB)
by inverting for unknown/uncertain ice sheet model parameters.

Significantly reduce non physical transients without spin-up.
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Deterministic Inversion

Problem details

Available data/measurements

+ ice extension and surface topography

ice-sheet

+ surface velocity
+ Surface Mass Balance (SMB)

+ ice thickness H (sparse measurements)

Fields to be estimated
. ice thickness H (allowed to vary but weighted by observational uncertainties)

+ basal friction B (spatially variable proxy for all basal processes)

Modeling Assumptions
+ ice flow described by nonlinear Stokes equation

+ ice is close to mechanical equilibrium

Additional Assumption (for now)

+ given temperature field

Perego, Price, Stadler, Journal of Geophysical Research, 2014



Deterministic Inversion

PDE-constrained optimization problem: cost functional

Problem: find initial conditions such that the ice is close to thermo-mechanical
equilibrium, given the geometry and the SMB, and matches available observations.

Optimization problem:

find # and H that minimizes the functional J
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Antarctica Inversion (only for basal friction)

Objective functional: J(u(8), B) :/ %|u—u0b3\2ds—|— oz/ IVB|? ds
2 Yu >

ROL algorithm:
e Limited—Memory BFGS
e Backtrack line—search
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Deterministic Inversion for Greenland ice sheet

Inversion results: surface mass balance (SMB)

SMB (m/yr) needed for equilibrium SMB from climate model
(Ettema et al. 2009, RACMO2/GR)

.

Plot saturated.

In many places field ) | ,,_
is = hundreds m/yr. Sandia
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Greenland Inversion using Albany-Piro-ROL

Inversion with 1.6M parameters
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Bayesian Calibration (proof of concept w/ KLE)

Difficulty in UQ approach: “Curse of dimensionality”.
At relevant model resolutions, the basal friction parameter space can have O(10°) parameters.
However, the effective dimension of the problem is smaller.

2
=
12
tempt, we intend to use Hessian based covariance in the future.

. First at-

1. Assume analytic covariance kernel I', 0 = €xp

2. Perform eigenvalue decomposition of I'yior-

3. Take the mean 8 to be the deterministic solution and expand /3 in basis
of eigenvector {¢;, } of I'prior, with random variables {& }

Bw) =B+ >V udpbi(w)

*Expansion done on log(3) to avoid negative values for (.




Bayesian Calibration and Uncertainty Propagation
(feasibility study)

* First 10 KLE modes _ Eigenvalues Decay
(parallel C+ +/Trilinos code Anasazi). (100 eigenvalues capture 95% energy)
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Only spatial correlation has been considered.
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* Build Emulator. Polynomial chaos expansion (PCE) was formed for the mismatch
over random variables with uniform prior distributions using almost 300 steady-
state simulations. DAKOTA.

Emulator (Polynomial Chaos Expansion): ml_
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Bayesian Calibration and Uncertainty Propagation
(feasibility study)

» Inversion/Calibration. Markov Chain Monte Carlo (MCMC),delayed rejection adaptive
metropolis (DRAM), was performed on the PCE QUESO.

» Uncertainty propagation. Used Gaussian process to build surrogate using 66 transient

simulations.
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Bayesian Calibration and Uncertainty Propagation
(discussion on feasibility study)

Prior chosen is somewhat arbitrary, however it is possible to build an informed Gaussian
distribution using Hessian of the deterministic inversion.

Prior distribution size is big (in real application million of parameters with thousands
significant parameters) and so the KLE expansion needs several modes to retain most of
the prior energy — in the results shown we only retained 27% of the prior energy!

A lot of samples are needed to build the emulator. Cross correlation tests showed that the
emulator we built for the uncertainty propagation was not sufficient for building the
emulator.

We might use techniques such as compressed sensing technique* to adaptively select
significant modes and the basis for the parameter space. The hope is that only few modes
affect the low dimensional Qol (e.g. sea level rise).

It might be to use cheap physical models (e.g. SIA) or low resolution solves to reduce the
cost of building the emulator.

*Jakeman, Eldred, Sargsyan, JCP, 2015



Thank you!
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